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of the PENUT trial close the book on
erythropoietin for premature infant brain?

Joseph J. Volpea,b,∗
aDepartment of Neurology, Harvard Medical School, Boston, MA, USA
bDepartment of Pediatric Newborn Medicine, Harvard Medical School, Boston, MA, USA

Received 26 March 2020

Accepted 5 April 2020

Keywords: Erythropoietin, prematurity, neurodevelopmental outcome, pre-oligodendrocytes

1. Introduction

Erythropoietin (EPO), long-recognized for its ery-
thropoietic effects, has been shown in multiple animal
models of hypoxic-ischemic and inflammatory brain
injury to have major “neuroprotective” effects [1, 2].
In such models of human premature brain injury a
particular focus on prevention of pre-oligodendrocyte
(pre-OL) death and consequent white matter injury
(WMI) has been appropriate, because WMI is the
central neuropathology in such infants [3]. EPO
exerts its neuroprotective effects by anti-excitotoxic,
antioxidant, anti-inflammatory, and anti-apoptotic
effects [1, 2]. EPO has been shown specifically to
prevent or mitigate WMI in excellent animal models
[4–7].

Stimulated by the apparent experimental benefit of
EPO, numerous clinical studies assessing a role for
EPO have been carried out [8]. A meta-analysis of
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four randomized controlled trials comprising 1133
infants indicated that prophylactic EPO administra-
tion reduced the incidence of mental developmental
index scores of <70 (odds ratio 0.51 (0.31 to 0.81),
p < 0.005) at 18–24 months [8]. Notably, in one study
MRI at term equivalent age showed decreased WMI
and better white matter maturation in EPO-treated
infants [9, 10]. However, study designs differed
among the trials, including especially randomiza-
tion, numbers of infants at early gestational ages,
and durations of treatment. Because the total num-
bers of infants less than 28 weeks’ gestational age
were not large enough to assess adequately the
outcome in this critical group and because these
extremely preterm infants have the highest risk
of unfavorable outcomes, more data were clearly
needed.

2. PENUT trial

On this background a recent multicenter (19 sites,
30 hospitals), randomized, double-blind trial of EPO
was undertaken in 741 infants (24 to 27 6/7 weeks’
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gestation) [PENUT trial], i.e., preterm EPO Neu-
roprotection] [11]. Infants were administered EPO
or placebo within 24 hours of birth and contin-
ued through 32 weeks’ gestational age. Doses were
chosen in part on the basis of experimental studies
that indicate that “neuroprotective” effects of EPO
require doses considerably higher than those needed
to achieve erythropoietic effects [12]. The results of
this carefully executed trial were disappointing. Thus,
no differences between the EPO and placebo groups
were observed at 22 to 26 months of age in the primary
outcome of death or severe neurological impairment
(26% vs. 26%), or in the key secondary outcome
of death or moderate to severe neurodevelopmental
impairment (48% vs. 47%). A limitation of the study,
explicitly acknowledged by the investigators [11], is
that cognitive testing at two years of age is not so
reliable as testing at later ages [13]. Thus, a meta-
analysis of 24 studies in which early assessments (by
Bayley Scales of Infant Development-III or Griffiths
Scales of Mental Development) performed at 11/2

to 3 years of age were compared with later cogni-
tive tests carried out at school age showed that the
pooled sensitivity of early assessments for identify-
ing school-age cognitive deficits was only 55%. Thus,
later assessment of the infants in the PENUT trial
will be important. Additionally, because EPO has par-
ticularly beneficial effects on pre-OLs and, thereby,
potentially white matter development and because
the latter is an active process well beyond infancy
and thereby crucial for cognitive development, the
appearance of deficits in specific cognitive functions,
e.g., executive function, at later ages is a critical pos-
sibility to be tested. Notably, the EPO regimen in the
PENUT trial did show stimulation of erythropoiesis,
and no serious adverse effects.

Do the results of the large PENUT trial close
the book on the question of any value for EPO
in improving neurological outcomes in extremely
preterm infants? The purpose of this Commentary
is to suggest that this study should not close the book
on EPO but, rather, should raise the possibility that
the duration of EPO treatment was too brief.

3. Neuroprotection vs neurorestoration

“Neuroprotection” is a term often used to refer to
protection from cell death in the central nervous sys-
tem. In models of hypoxic-ischemic disease or stroke,
the term refers primarily to protection from neuronal
death. In the case of the premature infant the term is

most often used to refer primarily to death of pre-OLs,
the principal cellular target in cerebral WMI of pre-
maturity [14]. In experimental models of WMI, EPO
has been shown to prevent pre-OL death [4–7]. How-
ever, it has been well-established in studies of WMI in
experimental models and in human premature brain
that after the initial pre-OL death, proliferation of
oligodendroglial progenitors and replenishment of
the pre-OL pool occur [3, 15, 16]. A subsequent fail-
ure of maturation of these pre-OLs to mature OLs that
ensheath axons and form myelin is the central dis-
turbance in WMI of prematurity. This failure leads
to the subsequent dysmaturational events involving
both white and gray matter structures that underlie
the subsequent neurological deficits in these infants
[17]. The failure of pre-OL maturation and subse-
quent dysmaturational events occur over many weeks
to months after the initial injury [18]. These dys-
maturational events are mediated to a major degree
by the prominent microgliosis and astrogliosis that
are the hallmarks of subacute to chronic WMI. As
reviewed elsewhere [19], in WMI microglia and
astrocytes, normally crucial for a variety of aspects
of normal brain development, become “activated”
(microglia) and “reactive” (astrocytes). This change
from a normal to an inflammatory phenotype results
in molecular events that impair pre-OL maturation
[19]. This diffuse white matter gliosis is present in
the brain of premature infants with WMI for many
weeks and likely, months after the neonatal period
[15, 20–22].

Neurorestorative interventions are designed to
counteract these critical dysmaturational events
involving the pre-OL and, likely, secondarily, such
neuronal-axonal structures as cerebral cortex and tha-
lamus [18, 23]. Indeed, EPO has been shown to
promote pre-OL development in multiple models of
WMI [1, 5, 7, 24]. Promotion of angiogenesis and
neurogenesis also may occur [1, 25]. Because the
failure of pre-OL differentiation is important in the
genesis of axonal and neuronal dysmaturation, pro-
motion of pre-OL differentiation by EPO would be
expected to lead to widespread beneficial effects on
brain maturation, as shown in experimental models
[25]. The mechanisms of the beneficial effects of EPO
on pre-OL maturation have been reviewed in detail
elsewhere [1, 3, 24–27] but involve direct effects on
pre-OLs as well as indirect effects mediated by EPO’s
impact on microglia and astrocytes which underlie
much of the pre-OL maturational failure.

Consistent with EPO’s proposed neurorestora-
tive effects on pre-OL maturation are experimental
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studies of WMI in which EPO was administered after
the period of acute cell injury. Thus, in a develop-
ing rat model of WMI induced by hypoxia-ischemia,
Iwai and coworkers showed that administration of
EPO at multiple time points, beginning 48 hours
after the insult, led to significantly increased oligo-
dendrogenesis and maturation of oligodendrocytes
as well as attenuation of WMI [5]. In this neonatal
rat model, the 48-hour delay is equivalent to many
weeks to months in developing human brain. Simi-
larly, in a combined in vivo and in vitro study, Jantzie
and coworkers showed in a rat model of WMI pro-
duced by transient prenatal hypoxia-ischemia that
exposure to EPO several days later leads to enhanced
oligodendroglial development [24]. The findings are
consistent with previous observations that following
hypoxia the EPO receptor is upregulated on pre-OLs,
that signaling from the vacant EPO receptor leads to
pre-OL apoptosis, but that this deleterious effect can
be prevented and pre-OL differentiation promoted by
provision of adequate EPO ligand to occupy and acti-
vate the EPO receptor [24, 26, 27]. Taken together,
the experimental data indicate value of EPO as a neu-
rorestorative agent vis à vis the pre-OL, after the
period of acute cell injury.

4. Critical importance of duration of EPO
treatment

The duration of treatment in the PENUT trial (onset
24–28 weeks’ gestational age and continued to 32
weeks’ postconceptional age) “was determined on
the basis of the period of oligodendrocyte vulnera-
bility” [11]. Indeed, this period is the peak time for
the occurrence of overt periventricular leukomalacia
[3]. However, it now appears that modern-day WMI
evolves over a much longer period and is related to
the diffuse gliosis in cerebral white matter, which is
present far beyond the premature period (see earlier).
Moreover, although the pre-OL accounts for 90% of
the oligodendroglial lineage in the extremely preterm
infant, this vulnerable developing cell, even at term,
still accounts for 50% of the entire oligodendroglial
lineage in cerebral white matter. Thus, the vulnerable
pre-OLs are still abundant at 32 weeks’ postcon-
ceptional age when EPO treatment in the PENUT
trial ceased. More importantly, the dysmaturational
events that follow pre-OL injury, i.e. failure of pre-OL
maturation, secondary dysmaturation of neuronal-
axonal structures, occur over many weeks to
months.

The potential importance of a relatively prolonged
period of EPO treatment is suggested by a study
of very preterm infants (median gestational age, 28
wks) [28]. This trial, albeit smaller (n = 99) than the
PENUT trial, utilized EPO administration (as EPO
or its higher glycosylated derivative, darbepoietin)
thrice weekly through 35 weeks’ postconceptual age.
The treated infants had better cognitive outcomes and
less neurodevelopmental impairment at age 3.5 to
4 years, when compared to placebo-treated infants
(FSIQ: 91.1 ± 17.5 vs. 79.2 ± 18.5, p = 0.036; per-
formance IQ: 93.0 ± 17.0 vs. 79.5 ± 19.5, p = 0.018).
Thus, in this study EPO may have functioned as both
a neuroprotective and neurorestorative agent.

5. Conclusion

The PENUT trial, in many ways, was a superb,
carefully designed and intensive trial of nearly three
years’ duration. Repeating this trial with a longer
duration of treatment, e.g., to term equivalent age
or even longer, would be a major undertaking.
Issues related to safety (e.g., enhanced erythropoiesis,
altered iron homeostasis, etc.) would require care-
ful consideration. However, if, as experimental data
suggest, EPO is considered a potential major neu-
rorestorative therapy, it will be difficult to conclude
from the PENUT trial that this agent is not bene-
ficial for long-term outcome in extremely preterm
infants.
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